Beschreibung des Empfänger-Prüfgenerators Rel send 7a

SIEMENS

SIEMENS & HALSKE AG Wernerwerk F, Berlin-Siemensstadt

Beschreibung des Empfänger-Prüfgenerators Rel send 7a

	Seite
I. Anwendungsgebiet	2
II. Elektrische Daten	. 2
III. Wirkungsweise und innerer Aufbau	- 3
a) Wirkungsweise der Frequenzgenerstoren und der Fremdmodulation	d 3
b) Spannungsteiler und Ausgangsspannung	4
c) Aufbau der einzelnen Teile	4
1) Stromversorgung	4
2) Hochfrequenzgenerator	4
3) Tonfrequenzgenerator	5
4) Meßkreis	5
5) Spannungsteiler	5
6) Fremdmodulation	6
IV. Äußerer Aufbau	6
V. Bedienungsanweisung	. 7
a) Inbetriebnahme	7
b) Einstellen der Hochfrequenzspannung und Modulationsgrades .	des 7
c) Messungen	8
WI Zubobar Maße und Gewicht	14

I. Anwendungsgebiet

Der Empfänger-Prüfgenerator Rel send 7 ist ein Hochfrequenzgenerator, dessen Sendespannung und Frequenz sich in weiten Grenzen ändern lassen. Er dient zur Prüfung von Rundfunkempfängern und zwar zum Fehlersuchen oder zur Bestimmung der Leistungsfähigkeit.

Einige von diesen Prüfungen seien hier angeführt:

- 1) Eichen der Abstimmskalen
- 2) Feststellen der Abstimmbereiche
- >3) Empfindlichkeitsmessungen
- 4) Selektivitätsprüfungen
- ×5) Messang der vom Empfänger abgebbaren Leistung
- ?6) Prüfung der Fadingregulierung
 - 7) Abgleichen
 - 8) Zwischenfrequenzmessung in Überlagerungsgeräten
 - 9) Fehlereingrenzung
- 10) Untersuchungen an Sperrkreisen, Bandfiltern usw.

Diese Aufzählung ist keineswegs vollständig, sie soll nur zeigen, welche vielseitigen Verwendungsmöglichkeiten der Empfänger-Prüfgenerator hat.

II. Elektrische Daten

Frequenzbereich des Meßsenders f = 100 kHz...21 MHz entspr. einer Wellenlänge von $\lambda = 3000 \text{ m}$...14 m

Dieser Gesamtbereich ist durch auswechselbare Spulen in 6 Bereiche eingeteilt:

Bereich	Frequenz Wellenlünge etwa etwa	
1	100230 kHz	30001300 m
2	220580 kHz	1350 520 m
3	54015 5 0kHz	555 193 m
4.	1,453,60MHz	207 83 m
5	3,59,0 MHz	85,533,3 n
6	8 21 MHz	37,514,3 m

Frequenzunsicherheit nach ± 1 % + Ablesefehler 1/2stündiger Einbrennzeit Frequenzänderung pro Skalenteil **≤** 1 % am Frequenzkondensator Ausgangsspannung (in 2 Bereichen umschaltbàr) 1. Bereich ע 000 ב...ע 10 אגע 10 גע 10 אגע 1 mV... 100 mV 2. Bereich Ungenauigkeit der Leerlaufspannung 1()() kHz u.1,5 MHz±10% zwischen den Frequenzen 1.5 MHz u.8 " ±15% " ±2% MHz u.21 Innenwiderstand des Senders am 250) pF in Reihe m. 50Ω Kabelausgang Frequenz der Eigenmodulation 4()() Hz + 5% 50...6 ()()() Hz Frequenzbereich der Fremdmodulation Modulationsgrad der 100 kHz...3,5 MHz 27...33 % Fremdmodulation von b.10 V a.d.Mod. 3,5 MHz...8,() MHz 32...38 % Klemmen MHz...21 MHz 35...4() % Eigenmodulation

III. Wirkungsweise und innerer Aufbau

a) Wirkungsweise der Frequenzgeneratoren u.d. Fremdmodulation

Der Empfänger-Prüfgenerator Rel send 7a liefert eine stetig veränderbare Hochfrequenzspannung im Bereich von etwa 100 kHz bis 21 MHz. Bild 1 zeigt die Schaltung Der Hochfrequenzgenerator wird entdes Prüfgenerators. weder durch die eingebaute Tonfrequenzquelle von 400 Hz mit 30 % oder durch eine außen angelegte Tonfrequenzspanning von 50...6000 Hz moduliert (Fremdmodulation). Bei Fremdmodulation ist der Modulationsgrad bis zu einer Aussteuerung von 80 % der an die Modulationsklemmen angelegten Spannung U proportional. Einer Spannung U = 10 V.entspricht ein Modulationsgrad von etwa 30 %. Der Gang des Modulationsgrades über der Tonfrequenz ist durch die Kurve in Bild 3 dargestellt. Zur Modulation wird die Tonfrequenzspannung der Anodengleichspannung des Hochfrequenzgenerators überlagert (Anodenstrom-Modulation).

Das gesamte Frequenzgebiet von 100 kHz...21 MHz ist in 6 Bereiche aufgeteilt, die man durch Einsetzen der entsprechenden Spulensätze erhält.

b) Spannungsteiler, Ausgangsspannung

Zur Kontrolle der Hochfrequenz/dient das Instrument J. Die Ausgangsspannung kann mit einem geeichten kapazitiven Spannungsteiler in den Grenzen (),()1 mV bis 100 mV kontinuierlich geändert werden.

Die Ausgangsspannung ist im Frequenzbereich von 100 bis 1500 kHz auf \pm 10 % genau einstellbar, von 1,5 bis 8 MHz auf \pm 15 % und von 8 bis 21 MHz auf \pm 20 %. Bei hohen Frequenzen ist infolge der dort wirksam werdenden Induktivität des Kabels die am Spannungsteiler abgelesene Spannung kleiner als die in Wirklichkeit am Ausgang des Kabels vorhandene. Die in der Kurve in Bild 2 angegebenen % der abgelesenen Werte sind also der Ablesung zuzuzählen.

c) Aufbau der einzelnen Teile

1)_Stromversorgung_

Der Empfänger-Prüfgenerator ist mit Wechselstrom-Netzanschluß für Frequenzen > 50 Perioden ausgerüstet. Über eine Hochfrequenzsiebung wird die Netzspannung dem Transformator Tr zugeführt, der sekundärseitig die Heizspannung für die (indirekt geheizten) Röhren der Generatoren liefert. Die Anodenspannung wird der Gleichrichterröhre RGN 1054 entnommen.

2) Hochfrequenzgenerator

Der Hochfrequenzgenerator besteht aus einem im Anodenkreis einer REN 904 liegenden Schwingkreis, der induktiv auf das Gitter der Röhre rückgekoppelt ist. Meßkreis und Spannungsteiler sind an den Hochfrequenzgenerator durch eine Spule angekoppelt. Die Spulen sind in einem gemeinsamen, mit Steckern versehenen Spulentopf so eingebaut, daß man sie zum Einstellen eines
anderen Frequenzbereiches leicht auswechseln kann.
Mit Hilfe des Abstimmkondensators C₁ des Anodenkreises
läßt sich die Sendefrequenz kontinuierlich innerhalb
des Spulenbereichs ändern.

3) Tonfrequenzgenerator

Nach dem gleichen Prinzip arbeitet der Tonfrequenzgenerator; seine Frequenz liegt jedoch auf 400 Hz fest. Die Modulation erfolgt über den Modulationstransformator Ü, der auch die Schwing- und die Rückkopplungsspule trägt.

4) Meßkreis

Der Meßkreis besteht im wesentlichen aus einem Thermokreuz (Th) und einem Meßinstrument (J). Mit Hilfe des Regelwiderstandes R7 ist es möglich, die Eingangsspannung des Teilers auf einen bestimmten Wert zu bringen. Bei Eigenmodulation und bei Fremdmodulation bis 30 % ist der Zeiger des Instrumentes stets auf den roten Eichstrich einzustellen. Bei Fremdmodulation und höheren Modulationsgraden sind für die entsprechenden Modulationsgrade auf dem Meßinstrument besondere Marken angebracht, auf die eingestellt werden muß.

Die am Spannungsteiler C₁₃ eingestellte Spannung ist dann der Effektivwert der Trägerfrequenz (ohne Seitenbänder). Das entspricht der Leistungsangabe der Rundfunksender.

5) Spannungsteiler

Die am Meßkreis eingestellte Spannung wird durch den geeichten Drehkondensator C₁₃ und durch C₁₆ so geteilt, daß am Ausgang die an der Skala eingestellte Spannung herrscht, also 1...100 mV bei Stellung "mV" des Bereichschalters (S₂). Wird der Bereichschalter

auf Stellung "x10 av" gedreht, so wird die Spannung durch Zuschalten von C₁₄ und C₁₅ nochmals im Verhältnis 1:100 geteilt, so daß in die Stellung der Spannungsbereich von 10 av...1000 av (= 1 mv) umfaßt wird.

Die Ausgangsschaltung des Gerätes ist so gewählt, daß sie den Antennenverhältnissen der zu messenden Empfänger möglichst nahekommt, sodaß das Rundfunkgerät ohne weiteres an den Prüfgenerator angeschlossen werden kann (Innenwiderstand: 250 pF in Reihe mit 50 Ω).

6)_Fremdmodulation_

Wird der Prüfgenerator fremdmoduliert, so wird die Tonfrequenzspannung über eine Siebkette dem Übertrager Ü zugeführt. Der Anodenkreis des Tonfrequenzgenerators ist durch den Drehschalter S₃ in Stellung Fremdmod. unterbrochen. Die Fremdmodulationsspannung wird durch den Modulationsübertrager der Anodenspannungsleitung des Hochfrequenzgenerators überlagert.

Der Eingang der Fremdmodulation ist auf 600 Ω angepaßt.

IV. Außerer Aufbau (siehe Lichtbild Rel 354.5)

Die einzelnen Teile sind in einem Metallgehäuse untergebracht. Die Hauptteile, also Hochfrequenz- und Tongenerator, Meßkreis, Spannungsteiler, Netzteil, sind gegeneinander elektrisch abgeschirmt, so daß keine gegenseitige Beeinflussung und keine Störung durch Streufelder von außen möglich ist.

Die Frontplatte trägt die Skala für den Abstimmkondensator C_1 des Hochfrequenzgenerators, das Meßinstrument J zum Einstellen der Hochfrequenzspannung mit dem Widerstand R_7 (S_4) und die geeichte Skala des Spannungsteilers mit dem Drehkondensator C_{13} zur Einstellung einer bestimmten Ausgangsspannung. Unter dem Meßin-

instrument J ist der Drehschalter S₃ zum wahlweisen Einschalten von Fremd- oder Eigenmodulation, daneben sind die Anschlußklemmen für die Fremdmodulation angebracht. Rechts neben dem Spannungsteiler ist der Bereichschalter S₂ für den Spannungsteiler und darunter der Netzschalter S₁ und die Sicherung Si eingebaut. Darüber ist das Ausgangskabel angeschlossen. Die Fassungen für die Röhrensockel, das Thermokreuz und die Hochfrequenzspulen sind nach dem Aufklappen des Deckels zugänglich.

V. Bedienungsanweisung

a) Inbetriebnahme

Die Geräte sind für 220 V Netzspannung eingestellt. Sie können auch für andere Netzspannungen umgeschaltet werden. Um den Netztransformator für eine solche Umschaltung freizulegen, muß das Gehäuse nach Lösen der Schrauben an Front- und Grundplatte und an den Ecken der Rückseite entfernt werden. Für die Netzspannung von 220 V ist das Netz an die Lötfahnen "1" und "6" angeschlossen, für 175 V liegen die Anschlüsse an "1" und "5", für 135 V an "1" und "3" und für 110 V an "1" und "2".

Dann werden die Röhren, das Thermokreuz, der gewünschte Hochfrequenzspulensatz und die Sicherung eingesetzt, der Drehknopf (S_4) von R_7 nach links gedreht und das Gerät eingeschaltet $(S_1$ auf "Ein"). 1 Minute nach Einschalten ist der Sender betriebsfähig.

b) Einstellen der Hochfrequenzspannung und des Modulationsgrades

Die HF-Spannung wird mit S₄ so geregelt, daß der rote Strich erreicht wird. (Bei hohen Modulationsgraden vergl. S. 5). <u>Vor jedem Einschalten und vor jedem Spulenwechsel muß dieser Knopf nach links gedreht werden, weil sonst eine Überlastung des Thermoelementes eintreten kann.</u>

An Hand der Eichkurven (Beispiel s.Bild 4), die jedem Gerät beigegeben werden, wird mit Hilfe des Kondensators C₁ die gewünschte Frequenz an der 180° Skala eingestellt. Ein Skalenteil entspricht in dem Bereich jedes Hochfrequenzspulensatzes einer Frequenzänderung von höchstens 1 %.

Bei Übergang auf Fremdmodulation wird der Schalter S3 umgeschaltet und die Modulationsspannung an die bezeichneten Klemmen angelegt. 10 V. an den Eingangs-Klemmen ergeben etwa 30 % Modulationsgrad. (Genaueres s. II "Elektrische Daten" und Kurve in Bild 3). Für höheren Modulationsgrad ist höhere Spannung an den Modulationsklemmen erforderlich. Es kann ausnahmsweise vorkommen, daß die Modulationsröhre nicht schwingt^X); die Schwingungen setzen aber sicher ein, wenn der Schwingkreis durch kurzes Umschalten auf "Fremdmodulation" und Zurückschalten angestoßen wird.

Die jeweilig eingestellte Ausgangsspannung ist an der geeichten Skala des Kondensators C₁₃ abzulesen. In Stellung "mV" des Bereichschalters S₂ gibt der Zeigerausschlag die Ausgangsspannung in mV an. In Stellung "x10,aV" gibt die Ablesung, mit 10 multipliziert, den Wert der Ausgangsspannung in aV.

Durch Drehen des Spannungsteilers nach rechts bis zum Anschlag erhält man in Stellung "mV" eine Ausgangs-spannung von etwa 1 V.

Bei hohen Frequenzen ist zu berücksichtigen, daß das Ausgangskabel eine von der Frequenz abhängige Spannungserhöhung hervorruft (s.Kurve in Bild 2).

c) Messungen

Der Stecker des Ausgangskabels wird in die Antennenbuchse des zu prüfenden Rundfunkgerätes gesteckt und die Erdbuchse des Empfängers mit der Erdbuchse des Kabelsteckers und mit Erde verbunden.

x)Die Rückkopplung ist so klein wie möglich gewählt, um den Klirrfaktor der Eigenmodulation niedrig zu halten.

Den Modulationston kann man darauf hinter dem Empfangsgerät im Lautsprecher abhören, oder an einem an Stelle des Lautsprechers angeschalteten Meßinstrument^{XX}) kontrollieren.

Der im Rundfunkgerät eingebaute Lautsprecher wird sekundärseitig von seinem Anpassungsübertrager abgeschaltet. Der zweite Lautsprecheranschluß, der bei unseren Rundfunkempfängern als L.C. (Drossel-Kondensator)-Ausgang ausgeführt wird, muß mit einem Ohmschen Widerstand Ra abgeschlossen werden. Die Größe des Abschlußwiderstandes soll bei Eingitter-Endröhren dem doppelten, bei Schutznetzendröhren oder Penthoden etwa dem halben inneren Röhrenwiderstand gleich sein.

Hat der zu messende Rundfunkempfänger keinen zweiten Lauts recheranschluß mit L.C.-Ausgang, so kann die Primärwicklung des eingebauten Lautsprecherübertragers als Drossel benutzt werden. Der notwendige Kondensator (2...4 µF) muß dann nur mit dem einen Pol an die Anodenseite der Primärwicklung und der andere Pol an eine Ausgangsklemme gelegt werden. Zwischen den Punkten der Ausgangsklemme und "Erde" des Empfängers liegt dann die tonfrequente Wechselspannung, sodaß hier ein Anpassungswiderstand entsprechender Größe (vgl.oben) angeschlossen werden muß. Zur Bestimmung der Ausgangsleistung bzw. Einstellung der Normalleistung (50 mW) wird entweder die Spannung oder der Strom in demselben mit Hilfe des Tonfrequenz-Strom- und Spannungsprüfers Rel mse 48a gemessen (vgl. Bild 5). Man kann das Gerät Rel mse 48a in dieser Schaltung auch als Kontrolloder Anzeigeinstrument verwenden (s. Zwischenfrequenzmessung).

Vorteilhaft wird eine Strommessung vorgenommen, wie sie im Meßbeispiel 5 gezeigt wird (vgl. Bild 5 der Anlage).

Aus den im "Anwendungsgebiet" angegebenen Meßmöglichkeiten mögen zum besseren Verständnis einige Punkte herausgegriffen sein. Anhand der folgenden Meßbeispiele

Hierfür steht unser Tonfrequenz-Strom- und Spannungsprüfer Rel mse 48a (s.Rel beschr 601) zur Verfügung. Der Tonfrequenz Strom- und Spannungsprüfer
kann infolge seiner hohen Empfindlichkeit, seines
großen Frequenzumfanges und seiner 15 umschaltbaren
Strom- und Spannungsmeßbereiche auch für andere
Wechselstrommessungen zwischen 10...10 000 Hz ausgezeichnet verwendet werden.

ist es dann ein Leichtes, noch andere ähnliche Prüfungen und Messungen an Rundfunkgeräten vorzumehmen.

1) Prüfung der Empfängereichung

Die einem Rundfunksender entsprechende Sendefrequenz wird am Prüfgenerator eingestellt. Dann wird die Abstimmung des Rundfunkempfängers auf unsere Sendefrequenz eingestellt und festgestellt, ob die gefundene Einstellung mit der Angabe auf der Empfängerskala übereinstimmt. Die Übereinstimmung der Sendefrequenz mit der Abstimmung des Empfängers erkennt man an dem Auftreten eines Maximums des Modulationstones im Lautspre-Bei Verwendung des Anzeigegerätes Rel mse 48a kann man die Übereinstimmung der Abstimmungen durch den Maximalausschlag des Instruments feststellen. Spannungsteiler (C13) muß dabei so einreguliert werden, daß das Gerät weder übermäßig übersteuert, noch allzuwenig ausgesteuert wird. Man stellt zunächst auf etwa ... 100 mV ein und regelt, wenn die Abstimmung gefunden ist, vor der genauen Einstellung entsprechend zurück. Einhalten einer bestimmten Lautstärke ist nicht erforderlich. In dieser Weise werden mehrere Sendefrequenzen kontrolliert.

2) Zur Feststellung des Abstimmbereiches eines Empfängers stellt man ihn bei jedem Wellenbereich einmal auf die eine und nachher auf die andere Endstellung der Skala ein. Jetzt wird die Abstimmung des Empfänger-Prüfgenerators so lange verändert, bis sich durch den 400 Hz-Ton im Lautsprecher des Empfängers oder durch Maximalausschlag am Instrument des Rel mse 48a zeigt, daß die Frequenz des Empfängers mit der des Prüfgenerators übereinstimmt. Die Eichkurven geben die zugehörige Senderbzw. Empfangsfrequenz.

3)_Empfindlichkeitsmessung_

Man stimmt den zu prüfenden Empfänger auf die Sendefrequenz des Prüfgenerators ab. Am Prüfgenerator wird der Drehschalter $\rm S_2$ des Spannungsteilers auf Stellung "mV" gebracht. Der Drehknopf $\rm C_{13}$ wird nach rechts

gedreht, bis die Gradeinteilung 10 mV zeigt. Ist bei dieser Spannung (für den Empfänger) die Lautstärke des Lautsprechers noch groß genug, so wird der Schalter So auf Stellung "x10 AV" gebracht. C13 wird nun so lange verändert, bis die Eingangsspannung gerade noch ausreicht, um einen einwandfreien lautstarken Empfang (400 Hz-Ton) zu erzielen. Genauere Messungen lassen sich ausführen, wenn man den Lautsprecher durch ein Meßinstrument (z.B. Rel mse 48a) ersetzt und den Abschluß entsprechend gestaltet. Man rechnet sich aus, wie groß der Ausschlag des Instrumentes sein muß, damit die abgegebene Leistung 50 mW ("Normalleistung") beträgt (also z.B. bei $R_a = 10 \text{ k}\Omega$ ist der Strom : $J = \sqrt{\frac{N}{R_a}}$ = 2,3 mA oder die Spannung : $E = \sqrt{NR_a}$ = 23 V) und regelt nach erfolgter Abstimmung den Spannungsteiler soweit zurück, bis dieser Ausschlag erreicht wird. An der Skala von C₁₃ liest man die eingestellten Spannungen ab. Der Spannungsbetrag gibt dann die Empfindlichkeit des Rundfunkempfängers an.

- 4) Selektivitätsmessungen können entsprechend der Genauigkeit des Prüfgenerators durchgeführt werden. Man erzeugt mit ihm eine bestimmte Hochfrequenz, stimmt den Rundfunkempfänger genau auf diese Prüffrequenz ab und stellt den Spannungsteiler C₁₃ so ein, daß die Normalausgangsleistung 50 mW abgegeben wird (vgl. 3). Dann verstimmt man den Prüfgenerator um etwa + oder 9 kHz, und stellt nunmehr fest, um wieviel man die Eingangsspannung (durch Drehen von C₁₃) steigern muß, um dieselbe Ausgangslautstärke (50 mW) zu erzielen. Das Verhältnis der beiden an C₁₃ abgelesenen HF-Spannungen ist ein Maß für die Trennschärfe.
- 5) Messung der abgebbaren Empfängerleistung
 Die Schaltung zeigt Bild 5 der Anlage, aus der auch die Anschaltung des Tonfrequenz Strom- und Spannungsprüfers zu ersehen ist. Man stellt au Prüfgenerator eine Frequenz ein und stimmt den Rundfunkempfänger darauf ab.

Nun stellt man den Lautstärkeregler des Empfängers auf größte Lautstärke und regelt die Eingangsspannung (C_{13}) soweit zurück, daß der Modulationston 400 Hz noch deutlich hörbar ist. Der Lautsprecher wird nun durch das Meßinstrument (entsprechend Abschnitt Vc) ersetzt. Man steigert die Eingangsspannung stufenweise und liest die zugehörigen Ausschläge des Tonfrequenzinstrumentes ab. Trägt man den Ausgangsstrom (oder die Spannung) in Abhängigkeit von der Eingangs-HF-Spannung auf, so erhält man eine gerade Linie, solange der Empfänger nicht übersteuert ist. Schließlich biegt die Kurve bei großen Eingangsspannungen mehr oder weniger scharf An diesem Punkt ist der Empfänger maximal ausgesteuert und wird bei weiterer Steigerung der Eingangsspannung übersteuert. Aus dem zugehörigen Strom oder der Spannung erhält man die maximal abgebbare Empfängerleitung nach der Formel

$$N = J^2 \cdot R \text{ (mW) oder } N = \frac{E^2}{R} \text{(mW)}$$

J = gemessener Strom in mA

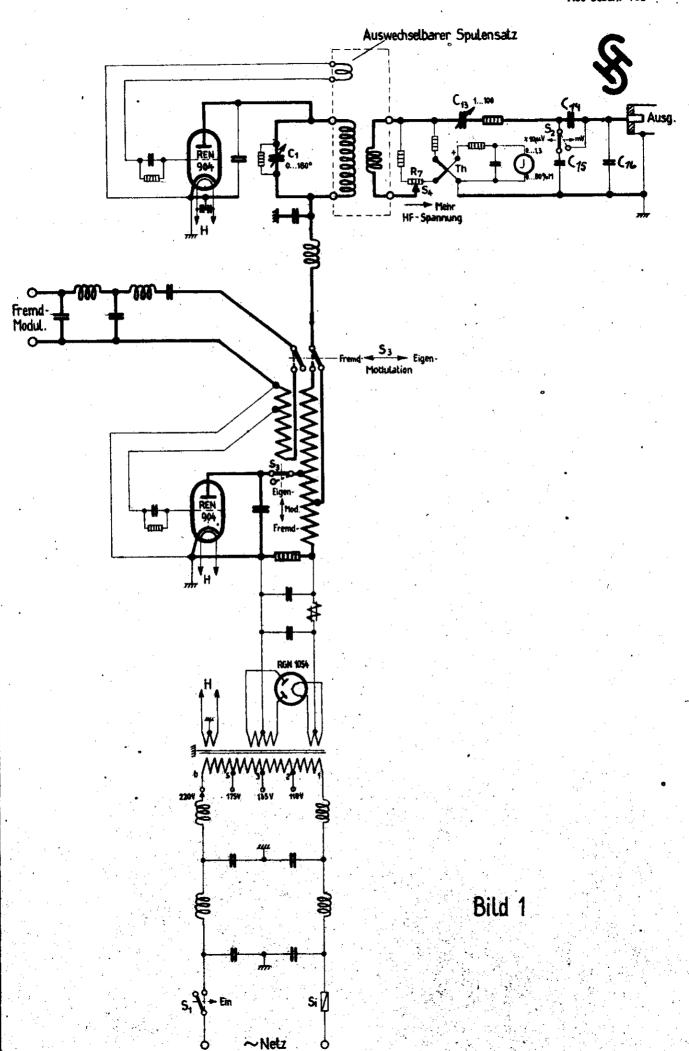
 $R = Anpassungswiderstand in k\Omega$

E = gemessene Spannung in V

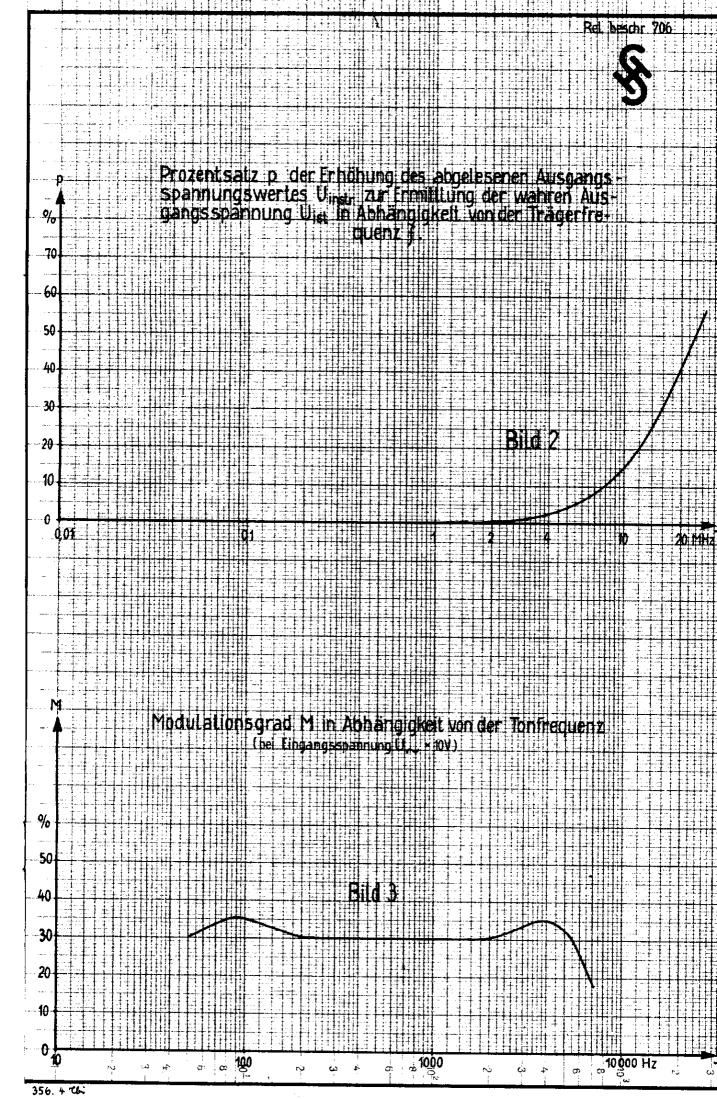
Die Messung läßt sich in dieser Weise nur bei Empfängern ohne Fadingregulierung durchführen. Gegebenenfalls muß sie vor der Messung außer Tätigkeit gesetzt werden.

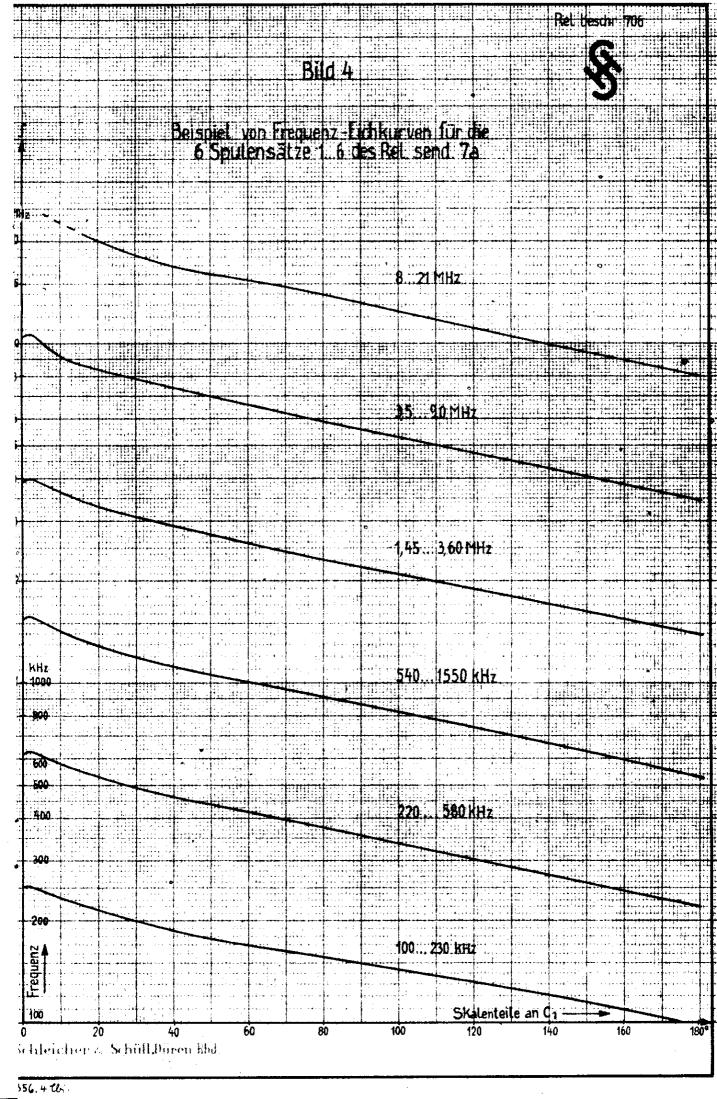
6) Kontrolle der Fadingregulierung

Der Prüfgenerator wird auf eine beliebige Senderfrequenz eingestellt und der zu prüfende Rundfunkempfänger mit eingebauter Fadingregulierung auf diese Senderfrequenz abgestimmt. Die Fadingregelkurve wird in genau derselben Weise aufgenommen wie die Aussteuerungskurve (vgl. 5), doch muß man bei kleineren HF-Spannungen beginnen (z.B. 20 µV). Ein Abbiegen der Kurve zeigt hierbei nicht Übersteuerung an, sondern Einsetzen der bei ganz kleinen Spannungen unwirksamen Fadingregelung. Je flacher die Kurve weiterhin verläuft, desto besser wirkt der Fadingausgleich.


7) Zwischenfrequenzmessung_

Der Prüfgenerator, Empfänger und Meßgerät sind nach Bild 5 zusammenzuschalten. Die Messung geht so vor sich, daß die Abstimmung des Prüfgenerators bei den Bereichspulen 0,100...0,230 oder 0,220...0,580 MHz innerhalb dieser Bereiche langsam verändert wird. (Die Empfängerabstimmung ist hierbei gleichgültig) Die Oberwelle der Zwischenfrequenz wird sich durch einen kleineren Ausschlag am Ausgangsinstrument bemerkbor machen, die Zwischenfrequenz selbst zeigt sich durch einen Maximalausschlag am Instrument des Rel mse 48. Aus der so gefundenen Einstellung des Prüfgenerators wird die Zwischenfrequenz aus den Eichkurven abgelesen.


VI. Zubehör, Maße und Gewicht


Gegenstand	Bezeichnung	Abmessungen in mm	Gewicht etwa kg	Listen- Nr.
Empfänger-Prüf- generator Zubehör: je l Spulensatz	Rel send 7a	45()x25()x18()	14	105 053
8 21 MHz	Rel Bv 118/140	į ·]	105 059
3,5 9. "	Rel By 118/141	y 55 · 78	I I	105 060
1,45 3,6 "	Rel Bv 118/142	ý 55 • 78		105 0 61
54() •••155() kHz	Rel Bv 118/143	Ø 55.• 78		105 062
220 580 "	Rel Bv 118/144	<i>у</i> 55 • 78		105 0 63
1()() ••• 23() "	Rel Bv 118/145	ý 55 . 78	,	105 064
eine Tafel mit 6 Ei c hkurven				
2 Röhren	REN 904		ŀ	105 931
1 Röhre	RGN 1054			105 935
1 Thermoelement	10 mA			105 968
1 Sicherung	FT 4	Ø 5x20		

Der Beschreibung liegen bei : 1 Lichtbild Rel 354.5 Bild 1...5

3645-6

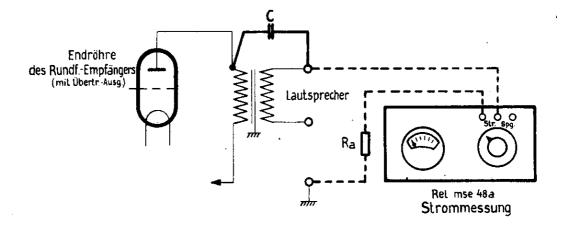
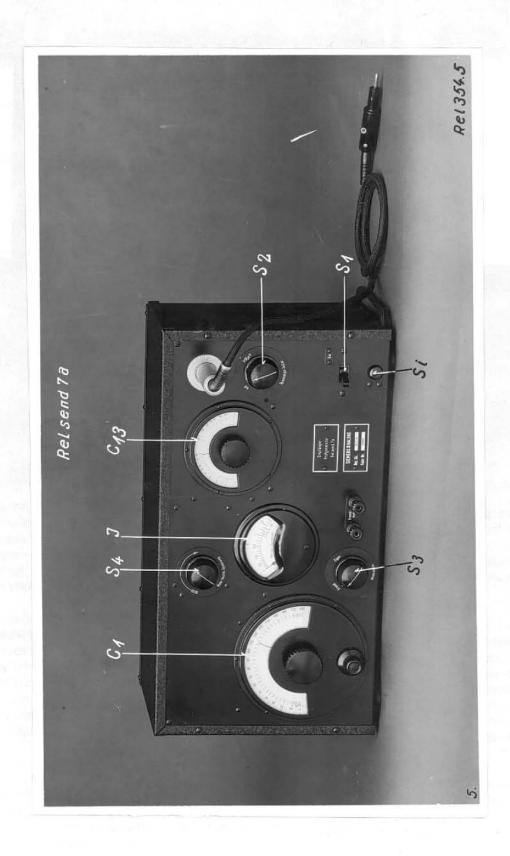



Bild 5

Umänderung des Übertrager-Ausganges auf LC-Ausgang.

